Tetrahedron Letters No.22, pp. 2459-2463, 1966. Pergamon Press Ltd. Printed in Great Britain.

A NEW C<sub>20</sub> GIBBERELLIN IN IMMATURE SEEDS OF <u>LUPINUS</u> <u>LUTEUS</u> Koichi Koshimizu, Hiroshi Fukui, Toshiatsu Kusaki, Tetsuo Mitsui and Yukiyoshi Ogawa\* Department of Agricultural Chemistry, Kyoto University, Kyoto, Japan. (Received 22 March 1966)

Extracts of immature seeds of <u>Lupinus luteus</u> have been found to possess biological activities similar to the gibberellins (1-4). It was suggested from the chromatographic behavior and the characteristics of infrared spectra that the active principles were different from  $C_{19}$ gibberellins (5). We wish to report the isolation of a new gibberellin, "Lupinus gibberellin-I", from the seeds, and to propose the structure shown as I for the gibberellin.

The method of isolation followed that of MacMillan et al. (6). The fraction eluted from the charcoal-celite column with water containing 59-62 % acetone was rechromatographed on silica-celite. Elution with 50-55 % ethyl acetate in chloroform yielded 35 mg. of Lupinus gibberellin,  $(L_1)$ , from 60 kg. of the seeds.  $L_1$ , (I), which formed needles from acetone, m.p. 240-242<sup>0</sup>, gave elementary analysis

\* Laboratory of Applied Botany, Faculty of Agriculture, Kyoto University. consistent with the formula  $C_{20}H_{28}O_6$ .

The infrared (I.R.) absorption (nujol) at 3400-3100 br., 2500 br., 1703 and 1673  $cm^{-1}$ , and no ultraviolet absorption between 250 and 350 mu indicated the presence of hydroxyl and carboxyl group in L<sub>1</sub>. The I.R. spectrum of the corresponding methyl ester (II) (KBr) showed absorption attributable to hydroxyl (3550-3300 br.  $cm^{-1}$ ), ester carbonyl (1725 br.  $cm^{-1}$ ) and terminal methylene (1667 and 894  $cm^{-1}$ ). Under normal acetylation conditions, the methyl ester formed a monoacetate (III) which had I.R. absorption (CHCl<sub> $\tau$ </sub>) at 3585 (tertiary hydroxyl), 1720 br. (ester carbonyl), 1665 and 896  ${\rm cm}^{-1}$  (terminal methylene), and had nuclear magnetic resonance (N.M.R.) signals at 0.70 and 0.97  $\delta$  (two tertiary methyls), 2.07 δ (acetate), 3.67 and 3.69 δ (two carbomethoxyls), 4.87 and 5.10  $\delta$  (terminal methylene, multiplet) and 5.29  $\delta$ (H-C-OAc, triplet, J=2.5 c.p.s.). In addition, a pair of doublets centered at 2.26 and 3.26 & (J=12 c.p.s.) was assigned to the 10, 10a AB-quartet which is a characteristic feature of the gibbane skeleton in the known gibberellins and their derivatives (7-9). The presence of a tertiary hydroxyl proton signal at 2.11 δ was confirmed by shaking the solution of the sample with deuterium oxide. L,,(I), has therefore five pendant carbon groups on a gibbane ring as  $GA_{12}$  (10) and  $GA_{13}$  (11) which were isolated from fermentations of Gibberella fujikuroi.

Treatment of  $L_1$  with dilute hydrochloric acid at  $100^{\circ}$  gave a keto-acid (IV), and methylation of the keto-acid



produced a dimethyl ester which readily formed a monoacetate (V). The resultant monoacetate (V) showed the I.R. absorption band (CCl<sub>4</sub>) at 1740 br. cm<sup>-1</sup>, and the N.M.R. signals at 0.67, 0.97 and 0.98 & (three tertiary methyls), 2.10 & (acetate), 2.40 (doublet, J=12 c.p.s.) and 3.38 & (doublet, J=12 c.p.s.) (10, 10a protons), 3.69 & (two carbomethoxyls) and 5.32 & (H-¢-OAc, triplet, J=2.5 c.p.s.). Comparison of the spectra of III and V showed that the acid treatment caused the rearrangement which is analogous to the Wagner-Meerwein rearrangement of GA<sub>1</sub> (12, 13), GA<sub>5</sub> (14), GA<sub>6</sub> and GA<sub>8</sub> (6) to their keto-acids.

The presence of a gibbane AB-quartet in  $L_1$  derivatives required a carboxyl group at C-10, and the rearrangement of  $L_1$ ; (I), to the keto-acid (IV) suggested that the tertiary hydroxyl group was placed at C-7 and the terminal methylene group at C-8. The keto-acid (IV) on treatment with the Jones reagent was oxidized to a diketo-acid which was decarboxylated at  $100^{\circ}$  to give a diketo-monoacid (VI). The N.M.R. spectrum of the corresponding methyl ester (VII) showed signals at 0.83  $\delta$  (=CH-CH<sub>3</sub>, doublet, J=6 c.p.s.), 0.98 and 1.02  $\delta$  (two tertiary methyls) and 3.67  $\delta$  (carbomethoxyl). The hydroxyl group was thus placed at C-2 which was adjacent to C-1 bearing both a tertiary methyl group and a carboxyl group.

Lupinus gibberellin-I was assayed on rice seedlings (15). It increased the second leaf sheath length to ca. 200 % of the control at an optimum concentration of 10 mg./1.

The N.M.R. spectra were measured on a Varian A6O spectrometer in carbontetrachloride with tetramethylsilane as internal reference.

We thank Dr. T. Shingu for the measurements of N.M.R. spectra and Prof. M. Nakajima for the I.R. absorption spectra.

## REFERENCES

| 1. | Y٠ | Murakami, | Bot. | Mag. | (Tokyo) | , 72, | 438 | (1959) | ). |
|----|----|-----------|------|------|---------|-------|-----|--------|----|
|    |    |           |      |      |         |       |     |        |    |

- Y. Ogawa and S. Imamura, <u>Bot. Mag. (Tokyo</u>), <u>73</u>, 125 (1960).
- Y. Hirono, Y. Ogawa and S. Imamura, <u>Plant & Cell Physiol.</u>, <u>1</u>, 81 (1960).
- 4. Y. Ogawa, Plant & Cell Physiol., 4, 85 (1963).
- 5. Y. Ogawa, Bot. Mag. (Tokyo), in impress.

- 6. J. MacMillan, J.C. Seaton and P.J. Suter, <u>Tetrahedron</u>, <u>18</u>, 349 (1962).
- 7. N. Sheppard, <u>J. Chem. Soc</u>., 3040 (1960).
- D.C. Akdridge, J.F. Grove, R.N. Speake, B.K. Tidd and W. Klyne, <u>J. Chem. Soc</u>., 143 (1963).
- 9. J.R. Hanson, J. Chem. Soc., 5036 (1965).
- 10. B.E. Cross and K. Norton, <u>J. Chem. Soc</u>., 1570 (1965).
- 11. R.H.B. Galt, J. Chem. Soc., 3143 (1965).
- N. Takahashi, Y. Seta, H. Kitamura, A. Kawarada and Y. Sumiki, <u>Bull. Agric. Chem. Soc. Japan</u>, <u>21</u>, 75 (1957).
- 13. B.E. Cross, J. Chem. Soc., 3022 (1960).
- 14. J. MacMillan, J.C. Seaton and P.J. Suter, <u>Tetrahedron</u>, <u>11</u>, 60 (1960).
- 15. Y. Ogawa, Plant & Cell Physiol., 4, 227 (1963).